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Abstract—We propose a modification of a well-known ant-
inspired trail-following algorithm to reduce congestion in
multi-robot systems. Our method results in robots moving in
multiple lanes towards their goal location. Our algorithm is
inspired by the idea of building multiple-lane highways to
mitigate traffic congestion in traffic engineering. We consider
the resource transportation task where autonomous robots
repeatedly transport goods between a food source and a nest in
an initially unknown environment. To evaluate our algorithm,
we perform simulation experiments in several environments
with and without obstacles. Compared with the baseline SO-
LOST algorithm, we find that our modified method increases
the system throughput by up to 3.9 times by supporting a
larger productive robot population.

I. INTRODUCTION

In swarm robotics, a large number of simple robots is used

to perform a task instead of relying only on a single complex

robot. This has a lot of potential in many applications. For

example, a multi-robot system can be utilized in the resource

transportation task where simple robots repeatedly transport

resources between two or more locations in a warehouse.

Previous work proposes different approaches for this task

in the context of mutli-robot systems. In [1], the authors

propose a ant-trail algorithm called LOST, where robots

lay logical waypoints, called crumbs, towards their goal

locations and broadcast them. These waypoints are virtual

pheromones that imitate the way real ants behave in their

environments. The waypoints result in trails between a food

source and a home location. These trails are optimized

online, leading consequently to a near-optimal single trail.

The LOST method is designed to be practical for real

robots under certain constraints. In [2], the authors show

that with large population of robots, this single trail becomes

congested and physical interferences between robots can

damage the system performance. As a result, the authors

propose the Spread-Out LOST (SO-LOST) algorithm which

results in having two spatially-separated trails; one goes

from the home location to the source and the other goes

in the opposite direction. Moreover, in [3] the authors study

the effect of changing the field of view (FOV) of the robots

in the original LOST algorithm on the system performance,

They conclude that by limiting the FOV, robots tend to

construct different trails in the environment which increases

the overall system performance. In this paper, we present a

method to establish multiple lanes/trails in order to better

distribute the robots in the environment, reduce the density

of the trails and the amount of inter-robot interference, and

thereby increase the system throughput in large populations.

The contribution is to show how SO-LOST and related al-

gorithms can be scaled up to larger, more dense populations

than previously possible.

II. RELATED WORK

Several previous authors have investigated the use of

spatial patterns of pheromones in multi-robot systems. Some

of them proposed using physical forms of pheromones while

others made use of logical ones. In [4], Khaliq and Saffiotti

used RFID tags to guide a team of ePuck robots through

their navigation in an apartment. Similar use of RFID tags

as pheromones was proposed in [5] and [6]. In addition,

Mayet et al. [7] used phosphorescent to mimic the foraging

behavior of the ants. Furthermore, some earlier work like [8]

and [9], used chemical substances as pheromones to mark

the world. The problem with all these approaches is that they

are difficult to use in practical robot systems, despite their

incredible success in real ants. A more promising approach

is to implement purely informational virtual pheromones.

For example, Hoff et al. [10] utilized bidirectional com-

munication between robots to exchange relative position

information and hence implement virtual pheromones. They

proposed two algorithms for the foraging task. The first

was a gradient-based algorithm which is suitable when the

food source is near the initial locations of the robots. The

second one was a sweeper algorithm at which robots sweep

the environment searching for far away food sources. They

also presented a switching algorithm between these two

algorithms along with a random walk behavior according

to the environment. The problem with all these algorithms

is that some of the robots are supposed to remain stationary

at some point and they act as landmarks or waypoints for

other robots (which they call walkers). This prevents the
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system from achieving its maximum possible throughput.

The idea of using bidirectional communication to implement

virtual pheromones was also presented earlier in [11] and

more recently in [12].

The effect of spatial interference between robots on the

overall system performance in multi-robot systems was stud-

ied in [13]. This paper showed that while the system’s overall

performance increases by adding more robots, the individual

robot’s performance decreases. One way to solve the spatial

interference problem is by enforcing physical separation

between robots. In the context of the resource transportation

task, some work proposes using task partitioning between

robots. This is done by assigning a robot or some robots to

a specific area in the working environment. The role of the

robots is to pick the resources from and drop them into the

working area of another robot. The assignment of robots to

different working areas can be done in a static or dynamic

fashion [14], [15], [16]. The problem with these approaches

is that the trajectory length to perform the task increases

with the numbers of robots. This consequently prevents the

system from reaching its optimal performance. Scheidler et
al. [17] proposed congestion control strategies to resolve

conflicts between robots. However, the proposed methods

require modifications either in the environment itself or in

the behavior of the agents.

III. LOST AND SO-LOST ALGORITHMS REVIEW

In this section we present a brief review of the LOST and

SO-LOST algorithms since our proposed method is based on

them. To facilitate the presentation, we consider the resource

transportation task between a single source and a single sink.

In such a scenario, a robot performs two subtasks: picking

resources from the food source and dropping them back

when it reaches the home location. In the LOST algorithm,

these subtasks are referred to as Events. The goal of the

LOST algorithm is to find trails between the source and

the home locations. Each robot can recognize each event

when it reaches it. The algorithm combines an event and

its position at this moment according to the robots local

coordinate system in a tuple called Place.

In LOST, robots lay logical waypoints called crumbs

imitating pheromones laid by ants in real world. A Crumb

is a data structure that consists of the place P to which it

refers, a localization space position L, a distance estimate d
between L and P and finally a time t referring to the creation

time of this crumb. The set of crumbs that refer to the same

Place is called a trail. Each robot has a temporary local trail

which is empty at the beginning. Then, the robot inserts

a new crumb to it every fixed time period. This process

continues until the robot reaches its goal (either the home

or food location). At this moment, the robot broadcasts its

temporary trail to all the robots including itself and then

deletes the temporary trail. In addition, the robot switches its

sub-task and repeats the above process with a new, initially

empty, temporary trail.

Each robot maintains a set of crumbs associated with

each unique Place mentioned in all received trail messages.

When a broadcast from another robot is received, each robot

adds the received crumbs to its local set for that Place.

LOST algorithm does not assume a global coordinate frame

reference between all the robots, so received crumbs are

mapped into each robot’s local coordinate system before

adding them to its local trail. This is done by comparing the

coordinates of the common places between all the robots

(e.g. the food or home locations) and calculating a unique

transformation between the local frames of each robot and

other robots. The trails are periodically scanned and crumbs

that are older than a threshold are deleted. This imitates the

evaporation of real pheromones in real ant trails, and allows

the trails to dynamically adapt to the environment.

Based on the above, a robot going to the home location

searches the environment within its field of view for all the

crumbs that refer to the same location. From those crumbs,

the robot chooses the nearest one to the goal location. The

output of the algorithm for the robot at this step is (i) the

distance that it should travel to reach the chosen crumb and

(ii) the heading towards it, that is the angle between the

robot’s current position and the chosen crumb position. By

using the set of crumbs in this way, over time a distinct

‘trail’ of distance-ordered crumbs emerges between a pair

of Places. For efficiency a heap data structure can be used

to store the set of crumbs ordered by distance-to-Place.

Although the LOST algorithm shows good performance

with a moderate population of robots, this is not always the

case with larger robot populations as all robots are attracted

to a single best known trail. As the population increases,

this can lead to very high robot density and thus increases

the probability of spatial interference between robots. This

undesirable interference can greatly decrease the overall

system performance.

The Spread-Out LOST (SO-LOST) algorithm tackles this

problem by ensuring that the trail going to the home location

avoids the other trail going to the food source. To achieve

this, the Place in any crumb is redefined to refer to the goal

location instead of the last visited place (as it is in LOST).

The process of laying and following crumbs in SO-LOST

is similar to the original process in LOST, but with simple

modifications. In the trail following process, the robot in

SO-LOST does not only head towards the nearest crumb to

the goal location, but it also takes into account the position

of crumbs heading to a different goal. If the chosen crumb is

close enough to another crumb from the latter category, the

robot changes its heading direction slightly to the left. By

doing so, robots move in two separate trails; one from home

to food and one in the other direction. In [2] the authors

show that the system throughput using SO-LOST, in terms

of the number of transported goods between the home and
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food locations, improves by up to three times more than the

LOST algorithm in dense robot populations in constrained

environments. However, with large enough populations, the

trails will surely saturate. One trail in each direction may

not be the best way to distribute robots.

IV. PROPOSED METHOD

The insight of our proposed method is that instead of

having only two trails like the case in the SO-LOST al-

gorithm [2], we let the robots construct multiple trails to

the same Place. The outcome of our method is having two

trails/lanes going from the home to the source and another

two going in the opposite direction. Our hypothesis is that

using this method, the density of the resultant trails will be

reduced. These lanes may be parallel, or may be separated

by obstacles. Multiple lanes will increase the overall system

performance as when a new lane is added to a congested

road in a crowded city.

In the spirit of LOST, the method is very simple: we

add one more item to the crumb data structure, which is

the lane number lc. The lane number refers to the lane

at which the robot moves. When a robot lays its first

crumb in the environment, it chooses either lane 1 or lane

2 with probability 50%. For the subsequent crumbs, the

robot assigns them the same lane number chosen for its first

crumb. A robot only follows the crumbs that have both the

same place (goal) and lane number. For example, a robot

going to the home location in lane 1 only follows the crumbs

heading to the same goal and having lane number equals 1,

while avoiding other crumbs which we call canti. Therefore,

in our case there may be more than one canti which the

robot wants to avoid. For each one of those, the robot checks

whether the crumb is in the left or the right of its current

position within a distance threshold. If the crumb is in the

left (right), then the robot moves its target position slightly

to the right (left). It also ensures that the new position does

not lie inside an obstacle. This is done by calculating a shift

vector for each nearby crumb just like the case in SO-LOST.

The sum of all those vectors constitutes the final motion

vector that the robot uses in its next move.

We think that our proposed method can lead to several

advantages. It can potentially reduce congestion and hence

increase the system’s throughput in dense robot populations.

This is true because the method effectively distributes the

robots in the environment and hence reduces the probability

of spatial interference.

One interesting observation about our method is that it

imitates real ants not only by using the notion of pheromones

but also in the way real ants handle congestion. The latter

behavior was studied by Couzin and Franks [18], and they

conclude that real army ants tend to form lanes while trans-

porting resources in order to minimize traffic congestion.

(a) SO-LOST

(b) Our Algorithm

Figure 1: The resulting trails in the empty environment using

SO-LOST and our algorithm.

V. EVALUATION

A. Simulation Setup

In order to evaluate our approach, we use the Stage robot

simulator [19]. Our simulated robots are Stage’s Pioneer

3DX and SICK LMS200 laser rangefinder models. We run

our experiments in three different environments. The first

is an empty one (Fig. 1). The second is what we call the

dots environment (Fig. 2) where the black dots represent

obstacles. The third is the cave environment (Fig. 3). The

three environments have the same size of 35x35m. The

food source in these environments is the blue square and

the home is the red square. Our performance metric is the

total number of transported resources between the home and

food locations after a period of time. We study how the

performance changes with the number of robots. To this

end, in each environment we run our experiment 10 times

163163



(a) SO-LOST

(b) Our Algorithm

Figure 2: The resulting trails in the dots environment using

SO-LOST and our algorithm.

for every population size. Each experiment takes two hours.

At the beginning of each experiment, robots start moving

from the same randomly chosen positions without knowing

the position of the home or the food.

B. Results

Fig. 4 shows the results of our approach. We compare

the results of the original SO-LOST [2] with our modified

multi-lane method. The empty environment is used to ex-

amine how the method distributes robots in the absence

of obstacles, where only inter-robot interference affects

navigation performance. The dots environment is used to

test how our method deals with obstacles. In addition, the

cave environment tests our algorithm in limited spaces that

contain obstacles. The curves in Fig. 4 represent the mean

values of all the experiments and the vertical bars show the

standard deviation for each population size.

(a) SO-LOST

(b) Our Algorithm

Figure 3: The resulting trails in the cave environment using

SO-LOST and our algorithm.

We found the performance of our algorithm is similar to

SO-LOST for small population sizes (10 and 20 robots). The

reason for this is that the new lanes added in our method

are longer than the two trails formed using the SO-LOST

algorithm. Moreover, congestion does not usually occur with

smaller number of robots and hence it does not challenge

the SO-LOST or show the merits of our approach.

Starting from 30-robot population size, our algorithm out-

performs the SO-LOST in all three environments. Compared

with SO-LOST, our algorithm improves the overall system

performance by up to 3.9 times in the empty and dots

environments.

To stress test our method, we perform experiments with

even larger population sizes (e.g., 150, 200 and 250 robots).

We notice that the system throughput using our method

starts decreasing after 100 and 120 population sizes in the

empty and dots environments, respectively. Using the SO-
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Figure 4: The results of our algorithm compared with the SO-LOST in 3 different environments.

LOST, a similar decrease occurs but with smaller numbers

of robots, i.e., after 80 and 70 robots in the empty and the

dots environments, respectively. A similar trend occurs in

the cave environment where the curve of our method stops

fluctuating and decreases gradually after 120 robots. This

decrease occurs after 80 robots using the SO-LOST. More-
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over, even in these very large population sizes (greater than

120 robots), our method maintains its out-performance and

increases the system throughput by up to 133%, 144% and

93% in the empty, dots and cave environments, respectively,

compared to the SO-LOST algorithm.

In addition, we notice that the cave environment is the

most challenging one for both SO-LOST and our algorithm.

This is because it contains larger obstacles and has smaller

area for the robots to move. This makes it more difficult

for our algorithm because it needs more space to form the

lanes. Despite that, our results demonstrate that except for

the case of having 10 robots, our algorithm is better than the

SO-LOST and it achieves up to 93% increase in the system

performance.

We perform hypothesis testing using a T-test to verify

that the results of both the SO-LOST and our algorithm

are significantly different for each population size. The test

shows that for all population sizes, the results of the two

algorithms are significantly different (P <<0.05). The only

exception cases are highlighted in Fig. 4 using ellipses

around them. Notice that these cases occur only in small

population sizes.

VI. DISCUSSION

The core idea of our algorithm is that the poor effects of

traffic congestion in LOST-type methods can be addressed

by better distribution of the robots through the workspace.

We take an approach that is sympathetic to LOST by using

the notion of lanes from traffic engineering. One of the

advantages of our method is that it indirectly addresses

the problem of congestion at target locations (i.e. food and

home locations). In our method, there are multiple possible

entrances to the target instead of only one entrance per

direction in the SO-LOST.

We notice that in limited spaces like the case in the

cave environment, intersections between different lanes in

our method may often occur. However, our algorithm shows

improvement in these cases compared with SO-LOST. We

observe that in these challenging cases, our algorithm re-

tains the ability of LOST to adapt to regions of high

interference, and effectively tends to form wider lanes than

usual. Moreover, the intersections occur only between lanes

going towards the same goal. These two reasons can justify

why our algorithm outperforms the SO-LOST even in these

difficult scenarios.

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigated the problem of spatial

interference between robots in dense robot populations. We

proposed a simple but effective modification of an ant-trail

algorithm to use multiple lanes, as utilized in human traffic

engineering and large ant populations. Each robot sticks to

its lane, and thus avoids spatial interference with robots

in other lanes. To test the method’s effectiveness at the

canonical resource transportation task, we performed several

simulation experiments using our algorithm in environments

with and without obstacles. Our robots were able to transport

up to 3.9 times more resources compared to the baseline

single-lane method.

Our results in this paper showed that our algorithm

performs much better with large number of robots. In future

work, we are interested also in studying the correlation

between the size of the environment and the overall system

performance. We also demonstrated that by adding one more

heuristic (i.e. the lane number) to the crumb data structure

the system performance increased significantly. This opens

the door to think of more heuristics that can improve the

overall performance. Finally, we examined the use of exactly

two lanes, yet the method generalizes without modification

to any number of lanes. An obvious but possibly very useful

extension is to let the system itself dynamically discover an

ideal number of lanes based on the current congestion in the

environment.
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